3.2.21 \(\int \frac {a+b \text {sech}^{-1}(c x)}{(d+e x^2)^2} \, dx\) [121]

3.2.21.1 Optimal result
3.2.21.2 Mathematica [C] (warning: unable to verify)
3.2.21.3 Rubi [A] (verified)
3.2.21.4 Maple [C] (warning: unable to verify)
3.2.21.5 Fricas [F]
3.2.21.6 Sympy [F]
3.2.21.7 Maxima [F(-2)]
3.2.21.8 Giac [F]
3.2.21.9 Mupad [F(-1)]

3.2.21.1 Optimal result

Integrand size = 18, antiderivative size = 786 \[ \int \frac {a+b \text {sech}^{-1}(c x)}{\left (d+e x^2\right )^2} \, dx=-\frac {a+b \text {sech}^{-1}(c x)}{4 d \left (\sqrt {-d} \sqrt {e}-\frac {d}{x}\right )}+\frac {a+b \text {sech}^{-1}(c x)}{4 d \left (\sqrt {-d} \sqrt {e}+\frac {d}{x}\right )}+\frac {b \arctan \left (\frac {\sqrt {c d-\sqrt {-d} \sqrt {e}} \sqrt {1+\frac {1}{c x}}}{\sqrt {c d+\sqrt {-d} \sqrt {e}} \sqrt {-1+\frac {1}{c x}}}\right )}{2 d \sqrt {c d-\sqrt {-d} \sqrt {e}} \sqrt {c d+\sqrt {-d} \sqrt {e}}}+\frac {b \arctan \left (\frac {\sqrt {c d+\sqrt {-d} \sqrt {e}} \sqrt {1+\frac {1}{c x}}}{\sqrt {c d-\sqrt {-d} \sqrt {e}} \sqrt {-1+\frac {1}{c x}}}\right )}{2 d \sqrt {c d-\sqrt {-d} \sqrt {e}} \sqrt {c d+\sqrt {-d} \sqrt {e}}}-\frac {\left (a+b \text {sech}^{-1}(c x)\right ) \log \left (1-\frac {c \sqrt {-d} e^{\text {sech}^{-1}(c x)}}{\sqrt {e}-\sqrt {c^2 d+e}}\right )}{4 (-d)^{3/2} \sqrt {e}}+\frac {\left (a+b \text {sech}^{-1}(c x)\right ) \log \left (1+\frac {c \sqrt {-d} e^{\text {sech}^{-1}(c x)}}{\sqrt {e}-\sqrt {c^2 d+e}}\right )}{4 (-d)^{3/2} \sqrt {e}}-\frac {\left (a+b \text {sech}^{-1}(c x)\right ) \log \left (1-\frac {c \sqrt {-d} e^{\text {sech}^{-1}(c x)}}{\sqrt {e}+\sqrt {c^2 d+e}}\right )}{4 (-d)^{3/2} \sqrt {e}}+\frac {\left (a+b \text {sech}^{-1}(c x)\right ) \log \left (1+\frac {c \sqrt {-d} e^{\text {sech}^{-1}(c x)}}{\sqrt {e}+\sqrt {c^2 d+e}}\right )}{4 (-d)^{3/2} \sqrt {e}}+\frac {b \operatorname {PolyLog}\left (2,-\frac {c \sqrt {-d} e^{\text {sech}^{-1}(c x)}}{\sqrt {e}-\sqrt {c^2 d+e}}\right )}{4 (-d)^{3/2} \sqrt {e}}-\frac {b \operatorname {PolyLog}\left (2,\frac {c \sqrt {-d} e^{\text {sech}^{-1}(c x)}}{\sqrt {e}-\sqrt {c^2 d+e}}\right )}{4 (-d)^{3/2} \sqrt {e}}+\frac {b \operatorname {PolyLog}\left (2,-\frac {c \sqrt {-d} e^{\text {sech}^{-1}(c x)}}{\sqrt {e}+\sqrt {c^2 d+e}}\right )}{4 (-d)^{3/2} \sqrt {e}}-\frac {b \operatorname {PolyLog}\left (2,\frac {c \sqrt {-d} e^{\text {sech}^{-1}(c x)}}{\sqrt {e}+\sqrt {c^2 d+e}}\right )}{4 (-d)^{3/2} \sqrt {e}} \]

output
-1/4*(a+b*arcsech(c*x))*ln(1-c*(1/c/x+(-1+1/c/x)^(1/2)*(1+1/c/x)^(1/2))*(- 
d)^(1/2)/(e^(1/2)-(c^2*d+e)^(1/2)))/(-d)^(3/2)/e^(1/2)+1/4*(a+b*arcsech(c* 
x))*ln(1+c*(1/c/x+(-1+1/c/x)^(1/2)*(1+1/c/x)^(1/2))*(-d)^(1/2)/(e^(1/2)-(c 
^2*d+e)^(1/2)))/(-d)^(3/2)/e^(1/2)-1/4*(a+b*arcsech(c*x))*ln(1-c*(1/c/x+(- 
1+1/c/x)^(1/2)*(1+1/c/x)^(1/2))*(-d)^(1/2)/(e^(1/2)+(c^2*d+e)^(1/2)))/(-d) 
^(3/2)/e^(1/2)+1/4*(a+b*arcsech(c*x))*ln(1+c*(1/c/x+(-1+1/c/x)^(1/2)*(1+1/ 
c/x)^(1/2))*(-d)^(1/2)/(e^(1/2)+(c^2*d+e)^(1/2)))/(-d)^(3/2)/e^(1/2)+1/4*b 
*polylog(2,-c*(1/c/x+(-1+1/c/x)^(1/2)*(1+1/c/x)^(1/2))*(-d)^(1/2)/(e^(1/2) 
-(c^2*d+e)^(1/2)))/(-d)^(3/2)/e^(1/2)-1/4*b*polylog(2,c*(1/c/x+(-1+1/c/x)^ 
(1/2)*(1+1/c/x)^(1/2))*(-d)^(1/2)/(e^(1/2)-(c^2*d+e)^(1/2)))/(-d)^(3/2)/e^ 
(1/2)+1/4*b*polylog(2,-c*(1/c/x+(-1+1/c/x)^(1/2)*(1+1/c/x)^(1/2))*(-d)^(1/ 
2)/(e^(1/2)+(c^2*d+e)^(1/2)))/(-d)^(3/2)/e^(1/2)-1/4*b*polylog(2,c*(1/c/x+ 
(-1+1/c/x)^(1/2)*(1+1/c/x)^(1/2))*(-d)^(1/2)/(e^(1/2)+(c^2*d+e)^(1/2)))/(- 
d)^(3/2)/e^(1/2)+1/4*(-a-b*arcsech(c*x))/d/(-d/x+(-d)^(1/2)*e^(1/2))+1/4*( 
a+b*arcsech(c*x))/d/(d/x+(-d)^(1/2)*e^(1/2))+1/2*b*arctan((1+1/c/x)^(1/2)* 
(c*d-(-d)^(1/2)*e^(1/2))^(1/2)/(-1+1/c/x)^(1/2)/(c*d+(-d)^(1/2)*e^(1/2))^( 
1/2))/d/(c*d-(-d)^(1/2)*e^(1/2))^(1/2)/(c*d+(-d)^(1/2)*e^(1/2))^(1/2)+1/2* 
b*arctan((1+1/c/x)^(1/2)*(c*d+(-d)^(1/2)*e^(1/2))^(1/2)/(-1+1/c/x)^(1/2)/( 
c*d-(-d)^(1/2)*e^(1/2))^(1/2))/d/(c*d-(-d)^(1/2)*e^(1/2))^(1/2)/(c*d+(-d)^ 
(1/2)*e^(1/2))^(1/2)
 
3.2.21.2 Mathematica [C] (warning: unable to verify)

Result contains complex when optimal does not.

Time = 1.64 (sec) , antiderivative size = 1216, normalized size of antiderivative = 1.55 \[ \int \frac {a+b \text {sech}^{-1}(c x)}{\left (d+e x^2\right )^2} \, dx =\text {Too large to display} \]

input
Integrate[(a + b*ArcSech[c*x])/(d + e*x^2)^2,x]
 
output
((2*a*Sqrt[d]*x)/(d + e*x^2) + (b*Sqrt[d]*ArcSech[c*x])/((-I)*Sqrt[d]*Sqrt 
[e] + e*x) + (b*Sqrt[d]*ArcSech[c*x])/(I*Sqrt[d]*Sqrt[e] + e*x) + (2*a*Arc 
Tan[(Sqrt[e]*x)/Sqrt[d]])/Sqrt[e] - (4*b*ArcSin[Sqrt[1 - (I*Sqrt[e])/(c*Sq 
rt[d])]/Sqrt[2]]*ArcTanh[(((-I)*c*Sqrt[d] + Sqrt[e])*Tanh[ArcSech[c*x]/2]) 
/Sqrt[c^2*d + e]])/Sqrt[e] + (4*b*ArcSin[Sqrt[1 + (I*Sqrt[e])/(c*Sqrt[d])] 
/Sqrt[2]]*ArcTanh[((I*c*Sqrt[d] + Sqrt[e])*Tanh[ArcSech[c*x]/2])/Sqrt[c^2* 
d + e]])/Sqrt[e] - (I*b*ArcSech[c*x]*Log[1 + (I*(Sqrt[e] - Sqrt[c^2*d + e] 
))/(c*Sqrt[d]*E^ArcSech[c*x])])/Sqrt[e] - (2*b*ArcSin[Sqrt[1 + (I*Sqrt[e]) 
/(c*Sqrt[d])]/Sqrt[2]]*Log[1 + (I*(Sqrt[e] - Sqrt[c^2*d + e]))/(c*Sqrt[d]* 
E^ArcSech[c*x])])/Sqrt[e] + (I*b*ArcSech[c*x]*Log[1 + (I*(-Sqrt[e] + Sqrt[ 
c^2*d + e]))/(c*Sqrt[d]*E^ArcSech[c*x])])/Sqrt[e] + (2*b*ArcSin[Sqrt[1 - ( 
I*Sqrt[e])/(c*Sqrt[d])]/Sqrt[2]]*Log[1 + (I*(-Sqrt[e] + Sqrt[c^2*d + e]))/ 
(c*Sqrt[d]*E^ArcSech[c*x])])/Sqrt[e] + (I*b*ArcSech[c*x]*Log[1 - (I*(Sqrt[ 
e] + Sqrt[c^2*d + e]))/(c*Sqrt[d]*E^ArcSech[c*x])])/Sqrt[e] - (2*b*ArcSin[ 
Sqrt[1 - (I*Sqrt[e])/(c*Sqrt[d])]/Sqrt[2]]*Log[1 - (I*(Sqrt[e] + Sqrt[c^2* 
d + e]))/(c*Sqrt[d]*E^ArcSech[c*x])])/Sqrt[e] - (I*b*ArcSech[c*x]*Log[1 + 
(I*(Sqrt[e] + Sqrt[c^2*d + e]))/(c*Sqrt[d]*E^ArcSech[c*x])])/Sqrt[e] + (2* 
b*ArcSin[Sqrt[1 + (I*Sqrt[e])/(c*Sqrt[d])]/Sqrt[2]]*Log[1 + (I*(Sqrt[e] + 
Sqrt[c^2*d + e]))/(c*Sqrt[d]*E^ArcSech[c*x])])/Sqrt[e] - (I*b*Log[((2*I)*S 
qrt[e]*(Sqrt[d]*Sqrt[(1 - c*x)/(1 + c*x)]*(1 + c*x) + (Sqrt[d]*Sqrt[e] ...
 
3.2.21.3 Rubi [A] (verified)

Time = 2.55 (sec) , antiderivative size = 842, normalized size of antiderivative = 1.07, number of steps used = 4, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.167, Rules used = {6847, 6374, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {a+b \text {sech}^{-1}(c x)}{\left (d+e x^2\right )^2} \, dx\)

\(\Big \downarrow \) 6847

\(\displaystyle -\int \frac {a+b \text {arccosh}\left (\frac {1}{c x}\right )}{\left (\frac {d}{x^2}+e\right )^2 x^2}d\frac {1}{x}\)

\(\Big \downarrow \) 6374

\(\displaystyle -\int \left (\frac {a+b \text {arccosh}\left (\frac {1}{c x}\right )}{d \left (\frac {d}{x^2}+e\right )}-\frac {e \left (a+b \text {arccosh}\left (\frac {1}{c x}\right )\right )}{d \left (\frac {d}{x^2}+e\right )^2}\right )d\frac {1}{x}\)

\(\Big \downarrow \) 2009

\(\displaystyle -\frac {\log \left (1-\frac {c \sqrt {-d} e^{\text {arccosh}\left (\frac {1}{c x}\right )}}{\sqrt {e}-\sqrt {d c^2+e}}\right ) \left (a+b \text {arccosh}\left (\frac {1}{c x}\right )\right )}{4 (-d)^{3/2} \sqrt {e}}+\frac {\log \left (\frac {\sqrt {-d} e^{\text {arccosh}\left (\frac {1}{c x}\right )} c}{\sqrt {e}-\sqrt {d c^2+e}}+1\right ) \left (a+b \text {arccosh}\left (\frac {1}{c x}\right )\right )}{4 (-d)^{3/2} \sqrt {e}}-\frac {\log \left (1-\frac {c \sqrt {-d} e^{\text {arccosh}\left (\frac {1}{c x}\right )}}{\sqrt {e}+\sqrt {d c^2+e}}\right ) \left (a+b \text {arccosh}\left (\frac {1}{c x}\right )\right )}{4 (-d)^{3/2} \sqrt {e}}+\frac {\log \left (\frac {\sqrt {-d} e^{\text {arccosh}\left (\frac {1}{c x}\right )} c}{\sqrt {e}+\sqrt {d c^2+e}}+1\right ) \left (a+b \text {arccosh}\left (\frac {1}{c x}\right )\right )}{4 (-d)^{3/2} \sqrt {e}}-\frac {a+b \text {arccosh}\left (\frac {1}{c x}\right )}{4 d \left (\sqrt {-d} \sqrt {e}-\frac {d}{x}\right )}+\frac {a+b \text {arccosh}\left (\frac {1}{c x}\right )}{4 d \left (\frac {d}{x}+\sqrt {-d} \sqrt {e}\right )}+\frac {b \arctan \left (\frac {\sqrt {c d-\sqrt {-d} \sqrt {e}} \sqrt {1+\frac {1}{c x}}}{\sqrt {c d+\sqrt {-d} \sqrt {e}} \sqrt {\frac {1}{c x}-1}}\right )}{2 d \sqrt {c d-\sqrt {-d} \sqrt {e}} \sqrt {c d+\sqrt {-d} \sqrt {e}}}+\frac {b \arctan \left (\frac {\sqrt {c d+\sqrt {-d} \sqrt {e}} \sqrt {1+\frac {1}{c x}}}{\sqrt {c d-\sqrt {-d} \sqrt {e}} \sqrt {\frac {1}{c x}-1}}\right )}{2 d \sqrt {c d-\sqrt {-d} \sqrt {e}} \sqrt {c d+\sqrt {-d} \sqrt {e}}}+\frac {b \operatorname {PolyLog}\left (2,-\frac {c \sqrt {-d} e^{\text {arccosh}\left (\frac {1}{c x}\right )}}{\sqrt {e}-\sqrt {d c^2+e}}\right )}{4 (-d)^{3/2} \sqrt {e}}-\frac {b \operatorname {PolyLog}\left (2,\frac {c \sqrt {-d} e^{\text {arccosh}\left (\frac {1}{c x}\right )}}{\sqrt {e}-\sqrt {d c^2+e}}\right )}{4 (-d)^{3/2} \sqrt {e}}+\frac {b \operatorname {PolyLog}\left (2,-\frac {c \sqrt {-d} e^{\text {arccosh}\left (\frac {1}{c x}\right )}}{\sqrt {e}+\sqrt {d c^2+e}}\right )}{4 (-d)^{3/2} \sqrt {e}}-\frac {b \operatorname {PolyLog}\left (2,\frac {c \sqrt {-d} e^{\text {arccosh}\left (\frac {1}{c x}\right )}}{\sqrt {e}+\sqrt {d c^2+e}}\right )}{4 (-d)^{3/2} \sqrt {e}}\)

input
Int[(a + b*ArcSech[c*x])/(d + e*x^2)^2,x]
 
output
-1/4*(a + b*ArcCosh[1/(c*x)])/(d*(Sqrt[-d]*Sqrt[e] - d/x)) + (a + b*ArcCos 
h[1/(c*x)])/(4*d*(Sqrt[-d]*Sqrt[e] + d/x)) + (b*ArcTan[(Sqrt[c*d - Sqrt[-d 
]*Sqrt[e]]*Sqrt[1 + 1/(c*x)])/(Sqrt[c*d + Sqrt[-d]*Sqrt[e]]*Sqrt[-1 + 1/(c 
*x)])])/(2*d*Sqrt[c*d - Sqrt[-d]*Sqrt[e]]*Sqrt[c*d + Sqrt[-d]*Sqrt[e]]) + 
(b*ArcTan[(Sqrt[c*d + Sqrt[-d]*Sqrt[e]]*Sqrt[1 + 1/(c*x)])/(Sqrt[c*d - Sqr 
t[-d]*Sqrt[e]]*Sqrt[-1 + 1/(c*x)])])/(2*d*Sqrt[c*d - Sqrt[-d]*Sqrt[e]]*Sqr 
t[c*d + Sqrt[-d]*Sqrt[e]]) - ((a + b*ArcCosh[1/(c*x)])*Log[1 - (c*Sqrt[-d] 
*E^ArcCosh[1/(c*x)])/(Sqrt[e] - Sqrt[c^2*d + e])])/(4*(-d)^(3/2)*Sqrt[e]) 
+ ((a + b*ArcCosh[1/(c*x)])*Log[1 + (c*Sqrt[-d]*E^ArcCosh[1/(c*x)])/(Sqrt[ 
e] - Sqrt[c^2*d + e])])/(4*(-d)^(3/2)*Sqrt[e]) - ((a + b*ArcCosh[1/(c*x)]) 
*Log[1 - (c*Sqrt[-d]*E^ArcCosh[1/(c*x)])/(Sqrt[e] + Sqrt[c^2*d + e])])/(4* 
(-d)^(3/2)*Sqrt[e]) + ((a + b*ArcCosh[1/(c*x)])*Log[1 + (c*Sqrt[-d]*E^ArcC 
osh[1/(c*x)])/(Sqrt[e] + Sqrt[c^2*d + e])])/(4*(-d)^(3/2)*Sqrt[e]) + (b*Po 
lyLog[2, -((c*Sqrt[-d]*E^ArcCosh[1/(c*x)])/(Sqrt[e] - Sqrt[c^2*d + e]))])/ 
(4*(-d)^(3/2)*Sqrt[e]) - (b*PolyLog[2, (c*Sqrt[-d]*E^ArcCosh[1/(c*x)])/(Sq 
rt[e] - Sqrt[c^2*d + e])])/(4*(-d)^(3/2)*Sqrt[e]) + (b*PolyLog[2, -((c*Sqr 
t[-d]*E^ArcCosh[1/(c*x)])/(Sqrt[e] + Sqrt[c^2*d + e]))])/(4*(-d)^(3/2)*Sqr 
t[e]) - (b*PolyLog[2, (c*Sqrt[-d]*E^ArcCosh[1/(c*x)])/(Sqrt[e] + Sqrt[c^2* 
d + e])])/(4*(-d)^(3/2)*Sqrt[e])
 

3.2.21.3.1 Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 6374
Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_.)*((d_) + (e 
_.)*(x_)^2)^(p_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*ArcCosh[c*x])^n, 
 (f*x)^m*(d + e*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[c^2*d 
 + e, 0] && IGtQ[n, 0] && IntegerQ[p] && IntegerQ[m]
 

rule 6847
Int[((a_.) + ArcSech[(c_.)*(x_)]*(b_.))^(n_.)*((d_.) + (e_.)*(x_)^2)^(p_.), 
 x_Symbol] :> -Subst[Int[(e + d*x^2)^p*((a + b*ArcCosh[x/c])^n/x^(2*(p + 1) 
)), x], x, 1/x] /; FreeQ[{a, b, c, d, e, n}, x] && IGtQ[n, 0] && IntegerQ[p 
]
 
3.2.21.4 Maple [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 55.84 (sec) , antiderivative size = 898, normalized size of antiderivative = 1.14

method result size
parts \(\frac {a x}{2 d \left (e \,x^{2}+d \right )}+\frac {a \arctan \left (\frac {e x}{\sqrt {d e}}\right )}{2 d \sqrt {d e}}+\frac {b \left (\frac {c^{3} \operatorname {arcsech}\left (c x \right ) x}{2 d \left (e \,c^{2} x^{2}+c^{2} d \right )}-\frac {\sqrt {-\left (c^{2} d -2 \sqrt {e \left (c^{2} d +e \right )}+2 e \right ) d}\, \left (c^{2} d +2 \sqrt {e \left (c^{2} d +e \right )}+2 e \right ) \operatorname {arctanh}\left (\frac {c d \left (\frac {1}{c x}+\sqrt {-1+\frac {1}{c x}}\, \sqrt {1+\frac {1}{c x}}\right )}{\sqrt {\left (-c^{2} d +2 \sqrt {e \left (c^{2} d +e \right )}-2 e \right ) d}}\right )}{2 d^{4} c^{3}}+\frac {\sqrt {-\left (c^{2} d -2 \sqrt {e \left (c^{2} d +e \right )}+2 e \right ) d}\, \left (c^{2} d \sqrt {e \left (c^{2} d +e \right )}+2 c^{2} d e +2 e^{2}+2 \sqrt {e \left (c^{2} d +e \right )}\, e \right ) \operatorname {arctanh}\left (\frac {c d \left (\frac {1}{c x}+\sqrt {-1+\frac {1}{c x}}\, \sqrt {1+\frac {1}{c x}}\right )}{\sqrt {\left (-c^{2} d +2 \sqrt {e \left (c^{2} d +e \right )}-2 e \right ) d}}\right )}{2 d^{4} \left (c^{2} d +e \right ) c^{3}}-\frac {\sqrt {\left (c^{2} d +2 \sqrt {e \left (c^{2} d +e \right )}+2 e \right ) d}\, \left (c^{2} d -2 \sqrt {e \left (c^{2} d +e \right )}+2 e \right ) \arctan \left (\frac {c d \left (\frac {1}{c x}+\sqrt {-1+\frac {1}{c x}}\, \sqrt {1+\frac {1}{c x}}\right )}{\sqrt {\left (c^{2} d +2 \sqrt {e \left (c^{2} d +e \right )}+2 e \right ) d}}\right )}{2 d^{4} c^{3}}+\frac {\sqrt {\left (c^{2} d +2 \sqrt {e \left (c^{2} d +e \right )}+2 e \right ) d}\, \left (-c^{2} d \sqrt {e \left (c^{2} d +e \right )}+2 c^{2} d e +2 e^{2}-2 \sqrt {e \left (c^{2} d +e \right )}\, e \right ) \arctan \left (\frac {c d \left (\frac {1}{c x}+\sqrt {-1+\frac {1}{c x}}\, \sqrt {1+\frac {1}{c x}}\right )}{\sqrt {\left (c^{2} d +2 \sqrt {e \left (c^{2} d +e \right )}+2 e \right ) d}}\right )}{2 d^{4} \left (c^{2} d +e \right ) c^{3}}-\frac {c^{2} \left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (c^{2} d \,\textit {\_Z}^{4}+\left (2 c^{2} d +4 e \right ) \textit {\_Z}^{2}+c^{2} d \right )}{\sum }\frac {\textit {\_R1} \left (\operatorname {arcsech}\left (c x \right ) \ln \left (\frac {\textit {\_R1} -\frac {1}{c x}-\sqrt {-1+\frac {1}{c x}}\, \sqrt {1+\frac {1}{c x}}}{\textit {\_R1}}\right )+\operatorname {dilog}\left (\frac {\textit {\_R1} -\frac {1}{c x}-\sqrt {-1+\frac {1}{c x}}\, \sqrt {1+\frac {1}{c x}}}{\textit {\_R1}}\right )\right )}{\textit {\_R1}^{2} c^{2} d +c^{2} d +2 e}\right )}{4 d}+\frac {c^{2} \left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (c^{2} d \,\textit {\_Z}^{4}+\left (2 c^{2} d +4 e \right ) \textit {\_Z}^{2}+c^{2} d \right )}{\sum }\frac {\operatorname {arcsech}\left (c x \right ) \ln \left (\frac {\textit {\_R1} -\frac {1}{c x}-\sqrt {-1+\frac {1}{c x}}\, \sqrt {1+\frac {1}{c x}}}{\textit {\_R1}}\right )+\operatorname {dilog}\left (\frac {\textit {\_R1} -\frac {1}{c x}-\sqrt {-1+\frac {1}{c x}}\, \sqrt {1+\frac {1}{c x}}}{\textit {\_R1}}\right )}{\textit {\_R1} \left (\textit {\_R1}^{2} c^{2} d +c^{2} d +2 e \right )}\right )}{4 d}\right )}{c}\) \(898\)
derivativedivides \(\frac {\frac {a \,c^{3} x}{2 d \left (e \,c^{2} x^{2}+c^{2} d \right )}+\frac {a c \arctan \left (\frac {e x}{\sqrt {d e}}\right )}{2 d \sqrt {d e}}+b \,c^{4} \left (\frac {\operatorname {arcsech}\left (c x \right ) x}{2 c d \left (e \,c^{2} x^{2}+c^{2} d \right )}-\frac {\sqrt {-\left (c^{2} d -2 \sqrt {e \left (c^{2} d +e \right )}+2 e \right ) d}\, \left (c^{2} d +2 \sqrt {e \left (c^{2} d +e \right )}+2 e \right ) \operatorname {arctanh}\left (\frac {c d \left (\frac {1}{c x}+\sqrt {-1+\frac {1}{c x}}\, \sqrt {1+\frac {1}{c x}}\right )}{\sqrt {\left (-c^{2} d +2 \sqrt {e \left (c^{2} d +e \right )}-2 e \right ) d}}\right )}{2 c^{7} d^{4}}+\frac {\sqrt {-\left (c^{2} d -2 \sqrt {e \left (c^{2} d +e \right )}+2 e \right ) d}\, \left (c^{2} d \sqrt {e \left (c^{2} d +e \right )}+2 c^{2} d e +2 e^{2}+2 \sqrt {e \left (c^{2} d +e \right )}\, e \right ) \operatorname {arctanh}\left (\frac {c d \left (\frac {1}{c x}+\sqrt {-1+\frac {1}{c x}}\, \sqrt {1+\frac {1}{c x}}\right )}{\sqrt {\left (-c^{2} d +2 \sqrt {e \left (c^{2} d +e \right )}-2 e \right ) d}}\right )}{2 \left (c^{2} d +e \right ) c^{7} d^{4}}-\frac {\sqrt {\left (c^{2} d +2 \sqrt {e \left (c^{2} d +e \right )}+2 e \right ) d}\, \left (c^{2} d -2 \sqrt {e \left (c^{2} d +e \right )}+2 e \right ) \arctan \left (\frac {c d \left (\frac {1}{c x}+\sqrt {-1+\frac {1}{c x}}\, \sqrt {1+\frac {1}{c x}}\right )}{\sqrt {\left (c^{2} d +2 \sqrt {e \left (c^{2} d +e \right )}+2 e \right ) d}}\right )}{2 c^{7} d^{4}}+\frac {\sqrt {\left (c^{2} d +2 \sqrt {e \left (c^{2} d +e \right )}+2 e \right ) d}\, \left (-c^{2} d \sqrt {e \left (c^{2} d +e \right )}+2 c^{2} d e +2 e^{2}-2 \sqrt {e \left (c^{2} d +e \right )}\, e \right ) \arctan \left (\frac {c d \left (\frac {1}{c x}+\sqrt {-1+\frac {1}{c x}}\, \sqrt {1+\frac {1}{c x}}\right )}{\sqrt {\left (c^{2} d +2 \sqrt {e \left (c^{2} d +e \right )}+2 e \right ) d}}\right )}{2 \left (c^{2} d +e \right ) c^{7} d^{4}}-\frac {\munderset {\textit {\_R1} =\operatorname {RootOf}\left (c^{2} d \,\textit {\_Z}^{4}+\left (2 c^{2} d +4 e \right ) \textit {\_Z}^{2}+c^{2} d \right )}{\sum }\frac {\textit {\_R1} \left (\operatorname {arcsech}\left (c x \right ) \ln \left (\frac {\textit {\_R1} -\frac {1}{c x}-\sqrt {-1+\frac {1}{c x}}\, \sqrt {1+\frac {1}{c x}}}{\textit {\_R1}}\right )+\operatorname {dilog}\left (\frac {\textit {\_R1} -\frac {1}{c x}-\sqrt {-1+\frac {1}{c x}}\, \sqrt {1+\frac {1}{c x}}}{\textit {\_R1}}\right )\right )}{\textit {\_R1}^{2} c^{2} d +c^{2} d +2 e}}{4 c^{2} d}+\frac {\munderset {\textit {\_R1} =\operatorname {RootOf}\left (c^{2} d \,\textit {\_Z}^{4}+\left (2 c^{2} d +4 e \right ) \textit {\_Z}^{2}+c^{2} d \right )}{\sum }\frac {\operatorname {arcsech}\left (c x \right ) \ln \left (\frac {\textit {\_R1} -\frac {1}{c x}-\sqrt {-1+\frac {1}{c x}}\, \sqrt {1+\frac {1}{c x}}}{\textit {\_R1}}\right )+\operatorname {dilog}\left (\frac {\textit {\_R1} -\frac {1}{c x}-\sqrt {-1+\frac {1}{c x}}\, \sqrt {1+\frac {1}{c x}}}{\textit {\_R1}}\right )}{\textit {\_R1} \left (\textit {\_R1}^{2} c^{2} d +c^{2} d +2 e \right )}}{4 c^{2} d}\right )}{c}\) \(913\)
default \(\frac {\frac {a \,c^{3} x}{2 d \left (e \,c^{2} x^{2}+c^{2} d \right )}+\frac {a c \arctan \left (\frac {e x}{\sqrt {d e}}\right )}{2 d \sqrt {d e}}+b \,c^{4} \left (\frac {\operatorname {arcsech}\left (c x \right ) x}{2 c d \left (e \,c^{2} x^{2}+c^{2} d \right )}-\frac {\sqrt {-\left (c^{2} d -2 \sqrt {e \left (c^{2} d +e \right )}+2 e \right ) d}\, \left (c^{2} d +2 \sqrt {e \left (c^{2} d +e \right )}+2 e \right ) \operatorname {arctanh}\left (\frac {c d \left (\frac {1}{c x}+\sqrt {-1+\frac {1}{c x}}\, \sqrt {1+\frac {1}{c x}}\right )}{\sqrt {\left (-c^{2} d +2 \sqrt {e \left (c^{2} d +e \right )}-2 e \right ) d}}\right )}{2 c^{7} d^{4}}+\frac {\sqrt {-\left (c^{2} d -2 \sqrt {e \left (c^{2} d +e \right )}+2 e \right ) d}\, \left (c^{2} d \sqrt {e \left (c^{2} d +e \right )}+2 c^{2} d e +2 e^{2}+2 \sqrt {e \left (c^{2} d +e \right )}\, e \right ) \operatorname {arctanh}\left (\frac {c d \left (\frac {1}{c x}+\sqrt {-1+\frac {1}{c x}}\, \sqrt {1+\frac {1}{c x}}\right )}{\sqrt {\left (-c^{2} d +2 \sqrt {e \left (c^{2} d +e \right )}-2 e \right ) d}}\right )}{2 \left (c^{2} d +e \right ) c^{7} d^{4}}-\frac {\sqrt {\left (c^{2} d +2 \sqrt {e \left (c^{2} d +e \right )}+2 e \right ) d}\, \left (c^{2} d -2 \sqrt {e \left (c^{2} d +e \right )}+2 e \right ) \arctan \left (\frac {c d \left (\frac {1}{c x}+\sqrt {-1+\frac {1}{c x}}\, \sqrt {1+\frac {1}{c x}}\right )}{\sqrt {\left (c^{2} d +2 \sqrt {e \left (c^{2} d +e \right )}+2 e \right ) d}}\right )}{2 c^{7} d^{4}}+\frac {\sqrt {\left (c^{2} d +2 \sqrt {e \left (c^{2} d +e \right )}+2 e \right ) d}\, \left (-c^{2} d \sqrt {e \left (c^{2} d +e \right )}+2 c^{2} d e +2 e^{2}-2 \sqrt {e \left (c^{2} d +e \right )}\, e \right ) \arctan \left (\frac {c d \left (\frac {1}{c x}+\sqrt {-1+\frac {1}{c x}}\, \sqrt {1+\frac {1}{c x}}\right )}{\sqrt {\left (c^{2} d +2 \sqrt {e \left (c^{2} d +e \right )}+2 e \right ) d}}\right )}{2 \left (c^{2} d +e \right ) c^{7} d^{4}}-\frac {\munderset {\textit {\_R1} =\operatorname {RootOf}\left (c^{2} d \,\textit {\_Z}^{4}+\left (2 c^{2} d +4 e \right ) \textit {\_Z}^{2}+c^{2} d \right )}{\sum }\frac {\textit {\_R1} \left (\operatorname {arcsech}\left (c x \right ) \ln \left (\frac {\textit {\_R1} -\frac {1}{c x}-\sqrt {-1+\frac {1}{c x}}\, \sqrt {1+\frac {1}{c x}}}{\textit {\_R1}}\right )+\operatorname {dilog}\left (\frac {\textit {\_R1} -\frac {1}{c x}-\sqrt {-1+\frac {1}{c x}}\, \sqrt {1+\frac {1}{c x}}}{\textit {\_R1}}\right )\right )}{\textit {\_R1}^{2} c^{2} d +c^{2} d +2 e}}{4 c^{2} d}+\frac {\munderset {\textit {\_R1} =\operatorname {RootOf}\left (c^{2} d \,\textit {\_Z}^{4}+\left (2 c^{2} d +4 e \right ) \textit {\_Z}^{2}+c^{2} d \right )}{\sum }\frac {\operatorname {arcsech}\left (c x \right ) \ln \left (\frac {\textit {\_R1} -\frac {1}{c x}-\sqrt {-1+\frac {1}{c x}}\, \sqrt {1+\frac {1}{c x}}}{\textit {\_R1}}\right )+\operatorname {dilog}\left (\frac {\textit {\_R1} -\frac {1}{c x}-\sqrt {-1+\frac {1}{c x}}\, \sqrt {1+\frac {1}{c x}}}{\textit {\_R1}}\right )}{\textit {\_R1} \left (\textit {\_R1}^{2} c^{2} d +c^{2} d +2 e \right )}}{4 c^{2} d}\right )}{c}\) \(913\)

input
int((a+b*arcsech(c*x))/(e*x^2+d)^2,x,method=_RETURNVERBOSE)
 
output
1/2*a*x/d/(e*x^2+d)+1/2*a/d/(d*e)^(1/2)*arctan(e*x/(d*e)^(1/2))+b/c*(1/2*c 
^3*arcsech(c*x)*x/d/(c^2*e*x^2+c^2*d)-1/2*(-(c^2*d-2*(e*(c^2*d+e))^(1/2)+2 
*e)*d)^(1/2)*(c^2*d+2*(e*(c^2*d+e))^(1/2)+2*e)*arctanh(c*d*(1/c/x+(-1+1/c/ 
x)^(1/2)*(1+1/c/x)^(1/2))/((-c^2*d+2*(e*(c^2*d+e))^(1/2)-2*e)*d)^(1/2))/d^ 
4/c^3+1/2*(-(c^2*d-2*(e*(c^2*d+e))^(1/2)+2*e)*d)^(1/2)*(c^2*d*(e*(c^2*d+e) 
)^(1/2)+2*c^2*d*e+2*e^2+2*(e*(c^2*d+e))^(1/2)*e)*arctanh(c*d*(1/c/x+(-1+1/ 
c/x)^(1/2)*(1+1/c/x)^(1/2))/((-c^2*d+2*(e*(c^2*d+e))^(1/2)-2*e)*d)^(1/2))/ 
d^4/(c^2*d+e)/c^3-1/2*((c^2*d+2*(e*(c^2*d+e))^(1/2)+2*e)*d)^(1/2)*(c^2*d-2 
*(e*(c^2*d+e))^(1/2)+2*e)*arctan(c*d*(1/c/x+(-1+1/c/x)^(1/2)*(1+1/c/x)^(1/ 
2))/((c^2*d+2*(e*(c^2*d+e))^(1/2)+2*e)*d)^(1/2))/d^4/c^3+1/2*((c^2*d+2*(e* 
(c^2*d+e))^(1/2)+2*e)*d)^(1/2)*(-c^2*d*(e*(c^2*d+e))^(1/2)+2*c^2*d*e+2*e^2 
-2*(e*(c^2*d+e))^(1/2)*e)*arctan(c*d*(1/c/x+(-1+1/c/x)^(1/2)*(1+1/c/x)^(1/ 
2))/((c^2*d+2*(e*(c^2*d+e))^(1/2)+2*e)*d)^(1/2))/d^4/(c^2*d+e)/c^3-1/4/d*c 
^2*sum(_R1/(_R1^2*c^2*d+c^2*d+2*e)*(arcsech(c*x)*ln((_R1-1/c/x-(-1+1/c/x)^ 
(1/2)*(1+1/c/x)^(1/2))/_R1)+dilog((_R1-1/c/x-(-1+1/c/x)^(1/2)*(1+1/c/x)^(1 
/2))/_R1)),_R1=RootOf(c^2*d*_Z^4+(2*c^2*d+4*e)*_Z^2+c^2*d))+1/4/d*c^2*sum( 
1/_R1/(_R1^2*c^2*d+c^2*d+2*e)*(arcsech(c*x)*ln((_R1-1/c/x-(-1+1/c/x)^(1/2) 
*(1+1/c/x)^(1/2))/_R1)+dilog((_R1-1/c/x-(-1+1/c/x)^(1/2)*(1+1/c/x)^(1/2))/ 
_R1)),_R1=RootOf(c^2*d*_Z^4+(2*c^2*d+4*e)*_Z^2+c^2*d)))
 
3.2.21.5 Fricas [F]

\[ \int \frac {a+b \text {sech}^{-1}(c x)}{\left (d+e x^2\right )^2} \, dx=\int { \frac {b \operatorname {arsech}\left (c x\right ) + a}{{\left (e x^{2} + d\right )}^{2}} \,d x } \]

input
integrate((a+b*arcsech(c*x))/(e*x^2+d)^2,x, algorithm="fricas")
 
output
integral((b*arcsech(c*x) + a)/(e^2*x^4 + 2*d*e*x^2 + d^2), x)
 
3.2.21.6 Sympy [F]

\[ \int \frac {a+b \text {sech}^{-1}(c x)}{\left (d+e x^2\right )^2} \, dx=\int \frac {a + b \operatorname {asech}{\left (c x \right )}}{\left (d + e x^{2}\right )^{2}}\, dx \]

input
integrate((a+b*asech(c*x))/(e*x**2+d)**2,x)
 
output
Integral((a + b*asech(c*x))/(d + e*x**2)**2, x)
 
3.2.21.7 Maxima [F(-2)]

Exception generated. \[ \int \frac {a+b \text {sech}^{-1}(c x)}{\left (d+e x^2\right )^2} \, dx=\text {Exception raised: ValueError} \]

input
integrate((a+b*arcsech(c*x))/(e*x^2+d)^2,x, algorithm="maxima")
 
output
Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(e>0)', see `assume?` for more de 
tails)Is e
 
3.2.21.8 Giac [F]

\[ \int \frac {a+b \text {sech}^{-1}(c x)}{\left (d+e x^2\right )^2} \, dx=\int { \frac {b \operatorname {arsech}\left (c x\right ) + a}{{\left (e x^{2} + d\right )}^{2}} \,d x } \]

input
integrate((a+b*arcsech(c*x))/(e*x^2+d)^2,x, algorithm="giac")
 
output
integrate((b*arcsech(c*x) + a)/(e*x^2 + d)^2, x)
 
3.2.21.9 Mupad [F(-1)]

Timed out. \[ \int \frac {a+b \text {sech}^{-1}(c x)}{\left (d+e x^2\right )^2} \, dx=\int \frac {a+b\,\mathrm {acosh}\left (\frac {1}{c\,x}\right )}{{\left (e\,x^2+d\right )}^2} \,d x \]

input
int((a + b*acosh(1/(c*x)))/(d + e*x^2)^2,x)
 
output
int((a + b*acosh(1/(c*x)))/(d + e*x^2)^2, x)